Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Mol Reprod Dev ; 91(4): e23742, 2024 Apr.
Article En | MEDLINE | ID: mdl-38644727

Preeclampsia (PE) is a common pregnancy complication with a high mortality rate. Abnormally activated endoplasmic reticulum stress (ERS) is believed to be responsible for the destruction of key placental cells-trophoblasts. Phenylbutyric acid (4-PBA), an ERS inhibitor, is involved in regulating the development of ERS-related diseases. At present, how 4-PBA affects trophoblasts and its mechanisms is still unclear. In this study, PE cell models were established by stimulating HTR-8/SVneo cells with hypoxia. To verify the underlying mechanisms of 4-PBA on PE, CCT020312, an activator of PERK, was also used. The results showed that 4-PBA restored hypoxia-induced trophoblast viability, inhibited HIF-1α protein expression, inflammation, and PERK/ATF-4/CHOP pathway. Hoechst 33342 staining and flow cytometry results confirmed that 4-PBA decreased hypoxia-induced apoptosis in trophoblasts. The results of the JC-1 analysis and apoptosis initiation enzyme activity assay also demonstrated that 4-PBA inhibited apoptosis related to the mitochondrial pathway. Furthermore, by detecting autophagy in trophoblasts, an increased number of autophagic vesicles, damaged mitochondria, enhanced dansylcadaverine fluorescence, enhanced levels of autophagy proteins Beclin-1, LC3II, and decreased p62 were seen in hypoxia-stimulated cells. These changes were reversed by 4-PBA. Furthermore, it was observed that CCT020312 reversed the effects of 4-PBA on the viability, apoptosis, and autophagosome number of hypoxia-induced trophoblasts. In summary, 4-PBA reduces autophagy and apoptosis via the PERK/ATF-4/CHOP pathway and mitochondrial pathway, thereby restoring the viability of hypoxic trophoblasts. These findings provide a solid evidence base for the use of 4-PBA in PE treatment and guide a new direction for improving the outcomes of patients with PE.


Activating Transcription Factor 4 , Apoptosis , Autophagy , Cell Hypoxia , Phenylbutyrates , Pre-Eclampsia , Transcription Factor CHOP , Trophoblasts , eIF-2 Kinase , Trophoblasts/drug effects , Trophoblasts/metabolism , Trophoblasts/pathology , Female , Humans , Pre-Eclampsia/metabolism , Pre-Eclampsia/drug therapy , Pre-Eclampsia/pathology , Autophagy/drug effects , Transcription Factor CHOP/metabolism , Apoptosis/drug effects , Pregnancy , Phenylbutyrates/pharmacology , eIF-2 Kinase/metabolism , Activating Transcription Factor 4/metabolism , Cell Hypoxia/drug effects , Signal Transduction/drug effects , Endoplasmic Reticulum Stress/drug effects , Cell Line
2.
Gene ; 911: 148358, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38467313

BACKGROUND: Paired-like Homeobox 2B (PHOX2B) is considered the causative gene of Congenital Central Hypoventilation Syndrome (CCHS), a dominant genetic disorder characterized by impaired central respiratory control and subsequent hypoventilation during sleep. METHODS: Herein, we present a family with recurrent severe CCHS. The potential causative genetic variant was confirmed through Whole-Exome Sequencing (WES), Sanger sequencing, and droplet digital PCR (ddPCR). Furthermore, prenatal diagnosis was performed on the proband's mother at 20 weeks of her fourth pregnancy upon request. RESULTS: The proband and her brother were both carriers of the PHOX2B polyalanine expansion variant: c.744_758dupCGCGGCAGCGGCGGCGGCGGC. Sanger sequencing revealed that the proband's father had a small variant peak in the gene position, implying potential somatic mosaicism. In addition, ddPCR results showed that the proband's father had germline mosaicism, with a mosaicism proportion of 14.3%. Notably, the detect p.(Ala241[26]) variant was not detected in the fetus. CONCLUSIONS: These findings have important implications for improving genetic counseling of CCHS families as they suggest that even parents without CCHS symptoms may have somatic chimerism, necessitating careful genetic counseling and consideration of prenatal testing for subsequent pregnancies.


Homeodomain Proteins , Hypoventilation , Hypoventilation/congenital , Sleep Apnea, Central , Humans , Male , Female , Pregnancy , Hypoventilation/genetics , Homeodomain Proteins/genetics , Mosaicism , Mutation , Alanine , Transcription Factors/genetics , Fathers
3.
BMC Med Genomics ; 16(1): 309, 2023 12 01.
Article En | MEDLINE | ID: mdl-38041082

BACKGROUND: Preeclampsia (PE), a pregnancy specific syndrome, is one kind of common gestational hypertension disease, which can cause maternal and perinatal mortality and morbidity. This study was conducted to identify key microRNAs (miRNAs), mRNAs and related signaling pathways in the pathogenesis of PE. METHODS: Whole transcriptome sequencing and small RNA sequencing of the peripheral blood from 3 PE patients and 3 normal pregnant women were performed. Differential expressed (DE) miRNAs were identified using the DEseq2 package. Target genes of the selected upregulated and downregulated DE miRNAs were predicted. Based on the hypergeometric distribution of DE miRNA target genes, we analyzed GO enrichment and KEGG pathway enrichment using R. RESULTS: Total 1291 and 1281 novel RNAs were obtained from the preeclampsia patients and healthy individuals. 70 miRNAs were screened out with significant levels with 51 significantly upregulated and 19 significantly downregulated. 44,306 genes were predicted as the targets of these miRNAs. Besides, KEGG pathway analysis revealed that the upregulated miRNAs were enriched in Glycosaminoglycan biosynthesis-chondroitin sulfate / dermatan sulfate, Base excision repair and the downregulated miRNAs were enriched in Tuberculosis, Phagosome. CONCLUSION: We constructed regulatory networks of miRNAs and target genes, there were 2208 negative miRNA-mRNA interactions in total. The network and pathway information illustrate the potential functions of mRNAs and miRNAs in PE pathogenesis.


MicroRNAs , Pre-Eclampsia , Humans , Female , Pregnancy , MicroRNAs/genetics , MicroRNAs/metabolism , Pre-Eclampsia/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , Gene Regulatory Networks
5.
Gene ; 854: 147108, 2023 Feb 20.
Article En | MEDLINE | ID: mdl-36535464

BACKGROUND: Preeclampsia (PE) is an idiopathic disorder of pregnancy. The exact cause of PE remains unknown. Emerging evidence indicates that the cause of PE is linked to genetic factors. Therefore, the aim of this study was to identify the susceptibility genes for PE. METHODS: Nine families with severe PE were recruited. The whole-exome sequencing (WES) was performed on each family, and Sanger sequencing was used to identify the potential pathogenic genetic variants. RESULTS: After a rigorous bioinformatics analysis, compound heterozygous variants in the NPFFR2 gene, NM_004885.2: c.601A > G, p.Met201Val and c.995C > T, p.Ala332Val were found in the No.4 pedigree. Bioinformatics analysis showed that these sites were highly conserved among several species and were predicted to be pathogenic variants according to multiple online mutational function prediction software packages. Due to the compound heterozygous variants of NPFFR2, more bonds are generated between mutant amino acids and spatial adjacent amino acids, which may lead to more stable active conformation of protein and not easy to be degraded. CONCLUSIONS: We demonstrated for the first time that compound heterozygous variants of the NPFFR2 gene might be potentially associated with severe PE, the results of this study provide clinicians and researchers with a better understanding of the molecular mechanisms underlying severe PE in pregnant women.


Pre-Eclampsia , Humans , Female , Pregnancy , Exome Sequencing , Pre-Eclampsia/genetics , Exome , Mutation , Pedigree
6.
Ann Clin Lab Sci ; 51(2): 182-189, 2021 Mar.
Article En | MEDLINE | ID: mdl-33941557

OBJECTIVE: Fetal growth restriction (FGR) refers to impaired and insufficient intrauterine growth potential caused by a variety of adverse factors and is a serious perinatal complication that leads to fetal or neonatal mortality and morbidity. FGR has numerous causes, and its pathogenesis has not been fully understood. Recently, increasing numbers of researchers have begun to focus on the placenta, the only link between the fetus and the mother. The placenta is a vital organ that plays key roles in fetal development. PLAC1 is a trophoblast-specific gene located on the X chromosome and is important for placental development. However, the biological role of PLAC1 in fetal growth restriction is not well understood. In this study, we investigated the changes in the expression of placental-specific protein 1(PLAC1) in the placentas of pregnant women with FGR and in the placentas of normal pregnancies. We also explored the regulation of PLAC1 in the growth of trophoblast cells. METHODS: Western blotting was used to detect the expression of PLAC1 in FGR and in normal placenta tissues. Cell counting kit 8 (CCK-8), wound healing, and transwell assays were used to detect the effects of PLAC1 knockdown on trophoblast cell proliferation, migration, and invasion. Western blotting was used to detect the expression of PLAC1 under hypoxic conditions, and the cell viability and apoptosis of trophoblast cells in a low oxygen concentration after overexpression of PLAC1 were detected by CCK-8 and flow cytometry assay. RESULTS: Compared with the placentas in the control group of normal pregnancies, the expression of PLAC1 in the placentas of the FGR group was significantly down-regulated (p<0.05). Knocking down PLAC1 by siRNA significantly inhibited the proliferation, migration, and invasion of trophoblast cells. After treatment with alow oxygen concentration, the expression of PLAC1 protein was significantly reduced (p<0.05). The overexpression of PLAC1 can reverse the cell viability of trophoblast cells (p<0.05) and inhibit apoptosis of trophoblast cells (p<0.05) in low oxygen concentration. CONCLUSION: The expression of PLAC1 was reduced in fetal growth restriction and did not protect trophoblast cells from hypoxic damage, suggesting that PLAC1 may be an important regulator in the occurrence of fetal growth restriction.


Fetal Growth Retardation/metabolism , Pregnancy Proteins/metabolism , Trophoblasts/metabolism , Adult , Apoptosis/genetics , Cell Line , Cell Movement/genetics , Cell Proliferation/genetics , China , Female , Fetal Growth Retardation/physiopathology , Humans , Placenta/metabolism , Placenta/pathology , Pregnancy , Pregnancy Proteins/genetics , Pregnancy Proteins/physiology , Signal Transduction/genetics , Trophoblasts/pathology
7.
PeerJ ; 9: e11299, 2021.
Article En | MEDLINE | ID: mdl-33976984

BACKGROUND: Preeclampsia (PE) is a pregnancy-specific syndrome, belongs to the gestational hypertension diseases category and is considered among the causes of maternal and perinatal mortality and morbidity. However, the pathogenesis of PE is still vague. METHODS: In the present study, the circular RNA (circRNA) expression patterns of normal pregnant women and PE patients were investigated using whole RNA sequencing. RESULTS: A total of 151 differential expressed circRNAs were identified including 121 upregulated and 30 downregulated ones. Functional and pathway enrichment analysis was conducted on the differentially expressed circRNAs using Gene Ontology and KEGG databases. The results of this analysis indicated that several crucial biological processes and pathways were enriched in PE patients. circRNA-microRNA (miRNA) interaction analysis indicated that the reported differentially expresse circRNAs may be associated with some regulatory functions through miRNAs in PE patients. Two ceRNAs networks were constructed according to the targeting relationship between circRNAs/miRNAs and miRNAs/mRNAs. One sub-network contained one upregulated circRNA, four downregulated miRNAs and five upregulated mRNAs, and another sub-network contained 10 downregulated circRNAs, 21 upregulated miRNAs and 15 downregulated mRNAs. CONCLUSION: CircRNA expression patterns have been investigated and this analysis revealed their potential regulatory mechanisms in PE patients. We constructed the ceRNAs (competing endogenous RNA) to reveal the potential molecular roles of dysregulated circRNAs in the PE patients using RNA sequencing data. circRNA_13301 was the only one upregulated circRNA in ceRNA being targeted by four miRNAs.

8.
Mol Cytogenet ; 14(1): 14, 2021 Mar 03.
Article En | MEDLINE | ID: mdl-33658067

BACKGROUND: Molecular genetic testing for the 11p15-associated imprinting disorder Beckwith-Wiedemann syndrome (BWS) is challenging because of the molecular heterogeneity and complexity of the affected imprinted regions. An integrated molecular approach to analyze the epigenetic-genetic alterations is required for accurate diagnosis of BWS. CASE PRESENTATION: We reported a Chinese case with BWS detected by SNP array analysis and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The genetic analysis showed a de novo duplication of 24 Mb at 11p15.5p14.3 is much longer than ever reported. MS-MLPA showed copy number changes with a peak height ratio value of 1.5 (three copies) at 11p15. The duplication of paternal origin with increase of methylation index of 0.68 at H19 and decreased methylation index of 0.37 at KCNQ1OT1. CONCLUSION: Combined chromosome microarray analysis and methylation profiling provided reliable diagnosis for this paternally derived duplication of BWS. The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.

9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 34(6): 857-860, 2017 Dec 10.
Article Zh | MEDLINE | ID: mdl-29188616

OBJECTIVE: To determine the origin of a supernumerary small marker chromosome found in a fetus using prenatal BACs-on-Beads (BoBs) and single nucleotide polymorphism array (SNP-array) assays. METHODS: The fetal sample was subjected to chromosomal karyotyping and BoBs analysis, and the results were validated with genome-wide scanning using a SNP microarray. RESULTS: The fetus was found to have a 47,XX,+mar karyotype. BoBs analysis indicated that there was an amplification between 18p11.32 and 18p11.21, which was verified by the SNP-array assay as a 18.3 Mb duplication occurring at 18p11.32q11.1. CONCLUSION: The karyotype of the fetus was determined as 47,XX,+der18(18p11.32?18q11.1::18q11.1?18p11.32). The duplication has involved important genes including SMCHD1, LPIN2 and TGIF1, which may result in severe malformations in the fetus.


Microarray Analysis/methods , Polymorphism, Single Nucleotide , Prenatal Diagnosis/methods , Adult , Aneuploidy , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Human, Pair 18/genetics , Female , Humans , Karyotyping , Pregnancy
10.
Article En | MEDLINE | ID: mdl-27843478

Yin-deficiency-heat (YDH) syndrome is a concept in Traditional Chinese Medicine (TCM) for describing subhealth status. However, there are few efficient diagnostic methods available for confirming YDH syndrome. To explore the novel method for diagnosing YDH syndrome, we applied iTRAQ to observe the serum protein profiles in YDH syndrome rats and confirmed protein levels by ELISA. A total of 92 differentially expressed proteins (63 upregulated proteins and 29 downregulated proteins), which were mainly involved in complement and coagulation cascades and glucose metabolism pathway, were identified by the proteomic experiments. Kininogen 1 (KNG1) was significantly increased (p < 0.0001), while apolipoprotein C-III (APOC3, p < 0.005) and paraoxonase 1 (PON1, p < 0.001) were significantly decreased in the serum of YDH syndrome rats. The combination of KNG1, APOC3, and PON1 constituted a diagnostic model with 100.0% sensitivity and 85.0% specificity. The results indicated that KNG1, APOC3, and PON1 may act as potential biomarkers for diagnosing YDH syndrome. KNG1 may regulate cytokines and chemokines release in YDH syndrome, and the low levels of PON1 and APOC3 may increase oxidative stress and lipolysis in YDH syndrome, respectively. Our work provides a novel method for YDH syndrome diagnosis and also provides valuable experimental basis to understand the molecular mechanism of YDH syndrome.

11.
Int J Biol Sci ; 12(2): 246-56, 2016.
Article En | MEDLINE | ID: mdl-26884721

The epidemic of pulmonary tuberculosis (TB), especially multidrug-resistance tuberculosis (MDR-TB) presented a major challenge for TB treatment today. We performed iTRAQ labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) and Solexa sequencing among MDR-TB patients, drug-sensitive tuberculosis (DS-TB) patients, and healthy controls. A total of 50 differentially expressed proteins and 43 differentially expressed miRNAs (fold change >1.50 or <0.60, P<0.05) were identified in the MDR-TB patients compared to both DS-TB patients and healthy controls. We found that 22.00% of differentially expressed proteins and 32.56% of differentially expressed miRNAs were related, and could construct a network mainly in complement and coagulation cascades. Significant differences in CD44 antigen (CD44), coagulation factor XI (F11), kininogen-1 (KNG1), miR-4433b-5p, miR-424-5p, and miR-199b-5p were found among MDR-TB patients, DS-TB patients and healthy controls (P<0.05) by enzyme-linked immunosorbent assay (ELISA) and SYBR green qRT-PCR validation. A strong negative correlation, consistent with the target gene prediction, was found between miR-199b-5p and KNG1 (r=-0.232, P=0.017). Moreover, we established the MDR-TB diagnostic model based on five biomarkers (CD44, KNG1, miR-4433b-5p, miR-424-5p, and miR-199b-5p). Our study proposes potential biomarkers for MDR-TB diagnosis, and also provides a new experimental basis to understand the pathogenesis of MDR-TB.


Tuberculosis, Multidrug-Resistant/diagnosis , Adult , Aged , Biomarkers/blood , Chromatography, Liquid , Data Mining , Decision Trees , Female , Humans , Male , MicroRNAs/blood , Middle Aged , Proteomics , ROC Curve , Sequence Analysis/methods , Tandem Mass Spectrometry , Transcriptome , Tuberculosis, Multidrug-Resistant/blood
12.
Sci Rep ; 5: 15615, 2015 Oct 26.
Article En | MEDLINE | ID: mdl-26499913

Rapid and efficient methods for the determination of cured tuberculosis (TB) are lacking. A total of 85 differentially expressed serum proteins were identified by iTRAQ labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) analysis (fold change >1.50 or <0.60, P < 0.05). We validated albumin (ALB), Rho GDP-dissociation inhibitor 2 (ARHGDIB), complement 3 (C3), ficolin-2 (FCN2), and apolipoprotein (a) (LPA) using the enzyme-linked immunosorbent assay (ELISA) method. Significantly increased ALB and LPA levels (P = 0.036 and P = 0.012, respectively) and significantly reduced ARHGDIB, C3, and FCN2 levels (P < 0.001, P = 0.035, and P = 0.018, respectively) were observed in cured TB patients compared with untreated TB patients. In addition, changes in ALB and FCN2 levels occurred after 2 months of treatment (P < 0.001 and P = 0.030, respectively). We established a cured TB model with 87.10% sensitivity, 79.49% specificity, and an area under the curve (AUC) of 0.876. The results indicated that ALB, ARHGDIB, C3, FCN2, and LPA levels might serve as potential biomarkers for cured TB. Our study provides experimental data for establishing objective indicators of cured TB and also proposes potential markers for evaluating the efficacy of anti-TB drugs.


Apolipoproteins A/blood , Complement C3/analysis , Lectins/blood , Serum Albumin/analysis , Tuberculosis, Pulmonary/diagnosis , rho Guanine Nucleotide Dissociation Inhibitor beta/blood , Adolescent , Adult , Aged , Antitubercular Agents/therapeutic use , Biomarkers/blood , Chromatography, Liquid , Disease-Free Survival , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Mycobacterium tuberculosis , ROC Curve , Tandem Mass Spectrometry , Treatment Outcome , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Young Adult , Ficolins
13.
PLoS One ; 10(9): e0138356, 2015.
Article En | MEDLINE | ID: mdl-26379154

Ficolin-2 (FCN2) is an innate immune pattern recognition molecule that can activate the complement pathway, opsonophagocytosis, and elimination of the pathogens. The present study aimed to investigate the association of the FCN2 gene single nucleotide polymorphisms (SNPs) with susceptibility to pulmonary tuberculosis (TB). A total of seven SNPs in exon 8 (+6359 C>T and +6424 G>T) and in the promoter region (-986 G>A, -602 G>A, -557 A>G, -64 A>C and -4 A>G) of the FCN2 gene were genotyped using the PCR amplification and DNA sequencing methods in the healthy controls group (n = 254) and the pulmonary TB group (n = 282). The correlation between SNPs and pulmonary TB was analyzed using the logistic regression method. The results showed that there were no significant differences in the distribution of allelic frequencies of seven SNPs between the pulmonary TB group and the healthy controls group. However, the frequency of the variant homozygous genotype (P = 0.037, -557 A>G; P = 0.038, -64 A>C; P = 0.024, +6424 G>T) in the TB group was significantly lower than the control group. After adjustment for age and gender, these variant homozygous genotypes were found to be recessive models in association with pulmonary TB. In addition, -64 A>C (P = 0.047) and +6424 G>T (P = 0.03) were found to be codominant models in association with pulmonary TB. There was strong linkage disequilibrium (r2 > 0.80, P < 0.0001) between 7 SNPs except the -602 G>A site. Therefore, -557 A>G, -64 A>C and +6424 G>T SNPs of the FCN2 gene were correlated with pulmonary TB, and may be protective factors for TB. This study provides a novel idea for the prevention and control of TB transmission from a genetics perspective.


Genetic Predisposition to Disease/genetics , Lectins/genetics , Polymorphism, Single Nucleotide/genetics , Tuberculosis, Pulmonary/genetics , Adolescent , Adult , Aged , Alleles , Case-Control Studies , Exons/genetics , Female , Gene Frequency/genetics , Genotype , Humans , Linkage Disequilibrium/genetics , Male , Middle Aged , Young Adult , Ficolins
14.
BMC Complement Altern Med ; 15: 243, 2015 Jul 22.
Article En | MEDLINE | ID: mdl-26198726

BACKGROUND: Traditional Chinese Medicine (TCM) has been applied in treating tuberculosis (TB) based on the TCM syndromes with the effects of inhibiting Mycobacterium, strengthening the body immune system, and reducing the pulmonary toxicity. We used bioinformatic methods to study the clinical and pathological characteristics of pulmonary TB patients with TCM syndromes. Isobaric tags for relative and absolute quantification - coupled two dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) methods were applied to screen differentially expressed serum proteins. METHODS: Pulmonary TB cases were divided into four distinctive TCM syndromes: pulmonary Yin deficiency (PYD) syndrome, hyperactivity of fire due to Yin deficiency (HFYD) syndrome, deficiency of Qi and Yin (DQY) syndrome, and deficiency of Yin and Yang (DYY) syndrome. The serum samples from 214 pulmonary TB patients were collected, and the clinical and pathological data was analyzed by using iTRAQ-2DLC-MS/MS. Finally, the differentially expressed proteins were screened and tested by ELISA. Only 5 patients with DYY syndrome were recruited in 3 years, which were not enough for further research. RESULTS: The DQY cases had higher erythrocyte sedimentation rate (ESR) compared to the PYD and HFYD cases (P=0.0178). 94.44% (12 PYD, 18 HFYD, and 4 DQY before anti-TB treatment) of 36 treated TB cases were transformed to PYD accompanied with the reduction of ESR and absorption of pulmonary lesions. A total of 39 differentially expressed proteins (ratios of >1.3 or <0.75) were found among the three TCM syndromes. Proteomic studies revealed that gamma-glutamyl hydrolase (GGH), Ig gamma-3 chain C region (IGHG3), and haptoglobin (HPT) were specifically over-expressed in PYD (P<0.01), HFYD (P<0.001), and DQY cases (P<0.01), respectively. Furthermore, GGH was significantly higher in PYD cases compared to the HFYD and DQY cases (P<0.01, P<0.001, respectively), whereas IGHG3 was significantly higher in HFYD cases than PYD and DQY cases (P<0.001, P<0.01, respectively). CONCLUSIONS: The results suggest that TCM syndromes are significantly correlated with the pulmonary lesions and ESR. GGH was associated with folate metabolism in PYD cases, IGHG3 was linked to the control of Mycobacterium infection in HFYD patients, and HPT was involved in hypoxia in DQY patients. The present study provides new biological basis to understand the pathological changes and proteomic differences of TB syndromes.


Haptoglobins/analysis , Immunoglobulin G/blood , Medicine, Chinese Traditional , Tuberculosis, Pulmonary/blood , gamma-Glutamyl Hydrolase/blood , Adolescent , Adult , Aged , Blood Sedimentation , Cohort Studies , Female , Humans , Male , Middle Aged , Young Adult
15.
Microsc Res Tech ; 78(6): 479-84, 2015 Jun.
Article En | MEDLINE | ID: mdl-25807922

To illustrate the mechanism of lymphatic reabsorption in knee joint effusion. The current investigation employed transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques to reveal the ultrastructure of the knee synovial membrane in New Zealand rabbits and human. Ultrastructural changes of the synovial lymphatic stomata were observed by using trypan blue absorption and sodium hydroxide (NaOH) digestion methods, and the animal models of synovitis. New Zealand rabbits and human synovial membranes were composed of two types of synovial cells: type A and type B. No lymphatic stomata were found among type A synovial cells, whereas lymphatic stomata with the diameters ranging 0.74-3.26 µm were found in type B synovial cells, and some stomata were closed. After the NaOH digestion, a number of sieve pores, similar to lymphatic stomata in size and shape, were observed in the dense fibrous connective tissue underneath the type B synovial cells. After injecting trypan blue into the rabbit knee joint cavity, absorption of trypan blue through the lymphatic stomata was observed, suggesting the absorption function of the synovial lymphatic stomata. In the rabbit knee joint synovitis models, the synovial lymphatic stomata diameter enlarged. Some macrophages migrated from the lymphatic stomata, indicating that the synovial lymphatic stomata were involved in the joint effusion absorption and inflammatory response. Our study is the first to report the existence of synovial lymphatic stomata in the New Zealand rabbits and human knee joints. Lymphatic stomata may have an important role in the reabsorption of joint effusion.


Ascitic Fluid/metabolism , Knee Joint/ultrastructure , Peritoneal Stomata/ultrastructure , Synovial Membrane/ultrastructure , Synovitis/pathology , Animals , Biological Transport , Humans , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Rabbits
16.
BMC Infect Dis ; 15: 41, 2015 Feb 05.
Article En | MEDLINE | ID: mdl-25650003

BACKGROUND: Single nucleotide polymorphisms (SNPs) within precursor microRNAs (miRNAs) can affect miRNAs expression, and may be involved in the pathogenesis of pulmonary tuberculosis (TB). This study aimed to investigate potential associations between the four precursor miRNA SNPs (miR-146a C > G, miR-149 T > C, miR-196a2 T > C, and miR-499 T > C) and susceptibility to pulmonary TB in the Chinese Uygur, Kazak, and Southern Han populations. METHODS: A case-control study was performed on Chinese Uygur (n = 662), Kazak (n = 612), and Southern Han (n = 654) populations using the PCR-PFLR method. The allele and genotype frequencies for all populations were analyzed. Linkage disequilibrium was performed, and different models of inheritance were tested. RESULTS: The allele and genotype frequencies of the miR-499 SNP were significantly different between the TB patients group and the healthy control group in the Uygur population, and were found to be codominant, dominant, recessive and additive models in association with pulmonary TB. The haplotype CTCC showed significant correlation with pulmonary TB. The allele and genotype frequencies of miR-146a and miR-196a2 SNPs were significantly different between the two groups in the Kazak population. The miR-146a SNP was found to be codominant, recessive and additive models, whereas, the miR-196a2 SNP was found to be codominant, dominant, and additive models in association with pulmonary TB. The haplotypes TCCC and CCCT showed significant correlation with pulmonary TB. CONCLUSIONS: The results suggested that susceptibility to pulmonary TB may be closely related to individual differences caused by genetic factors among different ethnic groups in China.


Genetic Predisposition to Disease/epidemiology , Tuberculosis, Pulmonary/epidemiology , Adolescent , Adult , Aged , Asian People/genetics , Case-Control Studies , China/epidemiology , Female , Genetic Predisposition to Disease/ethnology , Genetic Predisposition to Disease/genetics , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Tuberculosis, Pulmonary/ethnology , Tuberculosis, Pulmonary/genetics , Young Adult
17.
Proteomics ; 15(1): 58-67, 2015 Jan.
Article En | MEDLINE | ID: mdl-25332062

This study aimed to discover the novel noninvasive biomarkers for the diagnosis of pulmonary tuberculosis (TB). We applied iTRAQ 2D LC-MS/MS technique to investigate protein profiles in patients with pulmonary TB and other lung diseases. A total of 34 differentially expressed proteins (24 upregulated proteins and ten downregulated proteins) were identified in the serum of pulmonary TB patients. Significant differences in protein S100-A9 (S100A9), extracellular superoxide dismutase [Cu-Zn] (SOD3), and matrix metalloproteinase 9 (MMP9) were found between pulmonary TB and other lung diseases by ELISA. Correlations analysis revealed that the serum concentration of MMP9 in the pulmonary TB was in moderate correlation with SOD3 (r = 0.581) and S100A9 (r = 0.471), while SOD3 was in weak correlation with S100A9 (r = 0.287). The combination of serum S100A9, SOD3, and MMP9 levels could achieve 92.5% sensitivity and 95% specificity to discriminate between pulmonary TB and healthy controls, 90% sensitivity and 87.5% specificity to discriminate between pulmonary TB and pneumonia, and 85% sensitivity and 92.5% specificity to discriminate between pulmonary TB and lung cancer, respectively. The results showed that S100A9, SOD3, and MMP9 may be potential diagnostic biomarkers for pulmonary TB, and provided experimental basis for the diagnosis of pulmonary TB.


Calgranulin B/blood , Matrix Metalloproteinase 9/blood , Superoxide Dismutase/blood , Tuberculosis, Pulmonary/blood , Adult , Aged , Biomarkers/blood , Chromatography, Liquid , Female , Humans , Male , Middle Aged , Proteomics , Tandem Mass Spectrometry , Tuberculosis, Pulmonary/diagnosis , Young Adult
18.
BMC Infect Dis ; 14: 52, 2014 Jan 31.
Article En | MEDLINE | ID: mdl-24484408

BACKGROUND: Mycobacterium tuberculosis infection can activate the immune system, leading to characteristic pathological changes such as inflammatory granuloma, caseous necrosis, and cavity formation. METHODS: Clinical data of 187 cases of pulmonary tuberculosis (PTB) were analyzed using statistical methods, while serum levels of complement C4b (C4b), fibronectin (FN), and prolidase (PEPD) were detected using the ELISA method among the control, minimal PTB, moderate PTB, and advanced PTB groups. RESULTS: We found significantly higher levels of serum C4b and PEPD (P = 0.018, P = 0.003), and significantly lower levels of serum FN (P < 0.001) in PTB patients. Furthermore, the serum levels of 3 proteins were significantly different among 3 PTB groups. FN level was significantly higher in the moderate PTB group, compared with patients in the minimal and advanced PTB groups (P < 0.05, P < 0.01). PEPD level was significantly higher in the moderate PTB group, compared with the minimal PTB group (P < 0.05). Analysis of clinical data showed that serum albumin, C-reactive protein (CRP), prealbumin, and C4 were significantly higher (P < 0.05), while serum globulin was significantly lower in patients with PTB (P < 0.001). A significant negative correlation was found between C4b and albumin, prealbumin. On the other hand, a significant positive correlation was found between C4b and globulin, CRP, PEPD, as well as between PEPD and CRP (P < 0.05). CONCLUSIONS: Our study showed that C4b, FN, and PEPD are associated with tissue damage, granuloma formation, and cavity formation, respectively, in patients with PTB. The present study provides a new experimental basis to understand the pathogenesis and pathological changes of PTB.


Complement C4b/analysis , Dipeptidases/blood , Fibronectins/analysis , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/pathology , Adult , Aged , Case-Control Studies , Female , Humans , Male , Middle Aged , Mycobacterium tuberculosis/physiology , Severity of Illness Index , Tuberculosis, Pulmonary/microbiology , Young Adult
19.
Proteomics ; 14(2-3): 322-31, 2014 Feb.
Article En | MEDLINE | ID: mdl-24339194

Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis is a chronic disease. Currently, there are no sufficiently validated biomarkers for early diagnosis of TB infection. In this study, a panel of potential serum biomarkers was identified between patients with pulmonary TB and healthy controls by using iTRAQ-coupled 2D LC-MS/MS technique. Among 100 differentially expressed proteins screened, 45 proteins were upregulated (>1.25-fold at p < 0.05) and 55 proteins were downregulated (<0.8-fold at p < 0.05) in the TB serum. Bioinformatics analysis revealed that the differentially expressed proteins were related to the response to stimulus, the metabolic and immune system processes. The significantly differential expression of apolipoprotein CII (APOCII), CD5 antigen-like (CD5L), hyaluronan-binding protein 2 (HABP2), and retinol-binding protein 4 (RBP4) was further confirmed using immunoblotting and ELISA analysis. By forward stepwise multivariate regression analysis, a panel of serum biomarkers including APOCII, CD5L, and RBP4 was obtained to form the disease diagnostic model. The receiver operation characteristic curve of the diagnostic model was 0.98 (sensitivity = 93.42%, specificity = 92.86%). In conclusion, APOCII, CD5L, HABP2, and RBP4 may be potential protein biomarkers of pulmonary TB. Our research provides useful data for early diagnosis of TB.


Biomarkers/blood , Blood Proteins/analysis , Proteomics/methods , Tandem Mass Spectrometry/methods , Tuberculosis, Pulmonary/blood , Adult , Biomarkers/analysis , Chromatography, Liquid/methods , Female , Humans , Male , Middle Aged , Tuberculosis, Pulmonary/diagnosis , Young Adult
20.
PLoS One ; 8(12): e81076, 2013.
Article En | MEDLINE | ID: mdl-24349033

BACKGROUND: It is very difficult to prevent pulmonary tuberculosis (TB) due to the lack of specific and diagnostic markers, which could lead to a high incidence of pulmonary TB. We screened the differentially expressed serum microRNAs (miRNAs) as potential biomarkers for the diagnosis of pulmonary TB. METHODS: In this study, serum miRNAs were screened using the Solexa sequencing method as the potential biomarkers for the diagnosis of pulmonary TB. The stem-loop quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assay was used to verify differentially expressed serum miRNAs. The receiver operating characteristic (ROC) curve and logistic regression model were used to analyze the sensitivity and specificity of the single miRNA and a combination of miRNAs for diagnosis, respectively. Using the predicted target genes, we constructed the regulatory networks of miRNAs and genes that were related to pulmonary TB. RESULTS: The Solexa sequencing data showed that 91 serum miRNAs were differentially expressed in pulmonary TB patients, compared to healthy controls. Following qRT-PCR confirmation, six serum miRNAs (hsa-miR-378, hsa-miR-483-5p, hsa-miR-22, hsa-miR-29c, hsa-miR-101 and hsa-miR-320b) showed significant difference among pulmonary TB patients, healthy controls (P<0.001) and differential diagnosis groups (including patients with pneumonia, lung cancer and chronic obstructive pulmonary disease) (P<0.05). The logistic regression analysis of a combination of six serum miRNAs revealed that the sensitivity and the specificity of TB diagnosis were 95.0% and 91.8% respectively. The miRNAs-gene regulatory networks revealed that several miRNAs may regulate some target genes involved in immune pathways and participate in the pathogenesis of pulmonary TB. CONCLUSION: Our study suggests that a combination of six serum miRNAs have great potential to serve as non-invasive biomarkers of pulmonary TB.


Biomarkers/blood , MicroRNAs/blood , Tuberculosis, Pulmonary/blood , Adolescent , Adult , Female , Humans , Male , Middle Aged , Tuberculosis, Pulmonary/genetics , Young Adult
...